Copied to
clipboard

G = C2×C23.18D10order 320 = 26·5

Direct product of C2 and C23.18D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23.18D10, C24.58D10, (C2×D4).228D10, (C23×Dic5)⋊8C2, (C22×D4).10D5, (C2×C20).642C23, (C2×C10).291C24, C10.139(C22×D4), (C22×C4).269D10, (C22×C10).121D4, C23.67(C5⋊D4), C23.D557C22, (D4×C10).311C22, C10.D472C22, C105(C22.D4), (C23×C10).73C22, C22.305(C23×D5), C23.133(C22×D5), C22.77(D42D5), (C22×C20).437C22, (C22×C10).227C23, (C2×Dic5).291C23, (C22×Dic5)⋊48C22, (D4×C2×C10).21C2, (C2×C10).73(C2×D4), C56(C2×C22.D4), C10.103(C2×C4○D4), C2.67(C2×D42D5), (C2×C23.D5)⋊24C2, C2.12(C22×C5⋊D4), (C2×C10.D4)⋊47C2, (C2×C4).236(C22×D5), C22.108(C2×C5⋊D4), (C2×C10).175(C4○D4), SmallGroup(320,1468)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C23.18D10
C1C5C10C2×C10C2×Dic5C22×Dic5C23×Dic5 — C2×C23.18D10
C5C2×C10 — C2×C23.18D10
C1C23C22×D4

Generators and relations for C2×C23.18D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=1, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=fbf-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce-1 >

Subgroups: 958 in 342 conjugacy classes, 127 normal (19 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C23×C4, C22×D4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C2×C22.D4, C10.D4, C23.D5, C22×Dic5, C22×Dic5, C22×C20, D4×C10, D4×C10, C23×C10, C2×C10.D4, C23.18D10, C2×C23.D5, C2×C23.D5, C23×Dic5, D4×C2×C10, C2×C23.18D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22.D4, C22×D4, C2×C4○D4, C5⋊D4, C22×D5, C2×C22.D4, D42D5, C2×C5⋊D4, C23×D5, C23.18D10, C2×D42D5, C22×C5⋊D4, C2×C23.18D10

Smallest permutation representation of C2×C23.18D10
On 160 points
Generators in S160
(1 27)(2 28)(3 29)(4 30)(5 26)(6 24)(7 25)(8 21)(9 22)(10 23)(11 36)(12 37)(13 38)(14 39)(15 40)(16 31)(17 32)(18 33)(19 34)(20 35)(41 62)(42 63)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)(49 70)(50 61)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(81 115)(82 116)(83 117)(84 118)(85 119)(86 120)(87 111)(88 112)(89 113)(90 114)(91 107)(92 108)(93 109)(94 110)(95 101)(96 102)(97 103)(98 104)(99 105)(100 106)(121 159)(122 160)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 143)(132 144)(133 145)(134 146)(135 147)(136 148)(137 149)(138 150)(139 141)(140 142)
(1 41)(2 47)(3 43)(4 49)(5 45)(6 48)(7 44)(8 50)(9 46)(10 42)(11 51)(12 57)(13 53)(14 59)(15 55)(16 56)(17 52)(18 58)(19 54)(20 60)(21 61)(22 67)(23 63)(24 69)(25 65)(26 66)(27 62)(28 68)(29 64)(30 70)(31 71)(32 77)(33 73)(34 79)(35 75)(36 76)(37 72)(38 78)(39 74)(40 80)(81 122)(82 144)(83 124)(84 146)(85 126)(86 148)(87 128)(88 150)(89 130)(90 142)(91 149)(92 129)(93 141)(94 121)(95 143)(96 123)(97 145)(98 125)(99 147)(100 127)(101 131)(102 151)(103 133)(104 153)(105 135)(106 155)(107 137)(108 157)(109 139)(110 159)(111 156)(112 138)(113 158)(114 140)(115 160)(116 132)(117 152)(118 134)(119 154)(120 136)
(1 17)(2 18)(3 19)(4 20)(5 16)(6 14)(7 15)(8 11)(9 12)(10 13)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 52)(42 53)(43 54)(44 55)(45 56)(46 57)(47 58)(48 59)(49 60)(50 51)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)(81 100)(82 91)(83 92)(84 93)(85 94)(86 95)(87 96)(88 97)(89 98)(90 99)(101 120)(102 111)(103 112)(104 113)(105 114)(106 115)(107 116)(108 117)(109 118)(110 119)(121 126)(122 127)(123 128)(124 129)(125 130)(131 136)(132 137)(133 138)(134 139)(135 140)(141 146)(142 147)(143 148)(144 149)(145 150)(151 156)(152 157)(153 158)(154 159)(155 160)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(81 95)(82 96)(83 97)(84 98)(85 99)(86 100)(87 91)(88 92)(89 93)(90 94)(101 115)(102 116)(103 117)(104 118)(105 119)(106 120)(107 111)(108 112)(109 113)(110 114)(121 142)(122 143)(123 144)(124 145)(125 146)(126 147)(127 148)(128 149)(129 150)(130 141)(131 160)(132 151)(133 152)(134 153)(135 154)(136 155)(137 156)(138 157)(139 158)(140 159)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 150 12 124)(2 144 13 128)(3 148 14 122)(4 142 15 126)(5 146 11 130)(6 127 19 143)(7 121 20 147)(8 125 16 141)(9 129 17 145)(10 123 18 149)(21 153 31 139)(22 157 32 133)(23 151 33 137)(24 155 34 131)(25 159 35 135)(26 134 36 158)(27 138 37 152)(28 132 38 156)(29 136 39 160)(30 140 40 154)(41 92 57 97)(42 82 58 87)(43 100 59 95)(44 90 60 85)(45 98 51 93)(46 88 52 83)(47 96 53 91)(48 86 54 81)(49 94 55 99)(50 84 56 89)(61 118 71 113)(62 108 72 103)(63 116 73 111)(64 106 74 101)(65 114 75 119)(66 104 76 109)(67 112 77 117)(68 102 78 107)(69 120 79 115)(70 110 80 105)

G:=sub<Sym(160)| (1,27)(2,28)(3,29)(4,30)(5,26)(6,24)(7,25)(8,21)(9,22)(10,23)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,61)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,115)(82,116)(83,117)(84,118)(85,119)(86,120)(87,111)(88,112)(89,113)(90,114)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(121,159)(122,160)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,143)(132,144)(133,145)(134,146)(135,147)(136,148)(137,149)(138,150)(139,141)(140,142), (1,41)(2,47)(3,43)(4,49)(5,45)(6,48)(7,44)(8,50)(9,46)(10,42)(11,51)(12,57)(13,53)(14,59)(15,55)(16,56)(17,52)(18,58)(19,54)(20,60)(21,61)(22,67)(23,63)(24,69)(25,65)(26,66)(27,62)(28,68)(29,64)(30,70)(31,71)(32,77)(33,73)(34,79)(35,75)(36,76)(37,72)(38,78)(39,74)(40,80)(81,122)(82,144)(83,124)(84,146)(85,126)(86,148)(87,128)(88,150)(89,130)(90,142)(91,149)(92,129)(93,141)(94,121)(95,143)(96,123)(97,145)(98,125)(99,147)(100,127)(101,131)(102,151)(103,133)(104,153)(105,135)(106,155)(107,137)(108,157)(109,139)(110,159)(111,156)(112,138)(113,158)(114,140)(115,160)(116,132)(117,152)(118,134)(119,154)(120,136), (1,17)(2,18)(3,19)(4,20)(5,16)(6,14)(7,15)(8,11)(9,12)(10,13)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,52)(42,53)(43,54)(44,55)(45,56)(46,57)(47,58)(48,59)(49,60)(50,51)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,100)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,97)(89,98)(90,99)(101,120)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117)(109,118)(110,119)(121,126)(122,127)(123,128)(124,129)(125,130)(131,136)(132,137)(133,138)(134,139)(135,140)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,95)(82,96)(83,97)(84,98)(85,99)(86,100)(87,91)(88,92)(89,93)(90,94)(101,115)(102,116)(103,117)(104,118)(105,119)(106,120)(107,111)(108,112)(109,113)(110,114)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,141)(131,160)(132,151)(133,152)(134,153)(135,154)(136,155)(137,156)(138,157)(139,158)(140,159), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,150,12,124)(2,144,13,128)(3,148,14,122)(4,142,15,126)(5,146,11,130)(6,127,19,143)(7,121,20,147)(8,125,16,141)(9,129,17,145)(10,123,18,149)(21,153,31,139)(22,157,32,133)(23,151,33,137)(24,155,34,131)(25,159,35,135)(26,134,36,158)(27,138,37,152)(28,132,38,156)(29,136,39,160)(30,140,40,154)(41,92,57,97)(42,82,58,87)(43,100,59,95)(44,90,60,85)(45,98,51,93)(46,88,52,83)(47,96,53,91)(48,86,54,81)(49,94,55,99)(50,84,56,89)(61,118,71,113)(62,108,72,103)(63,116,73,111)(64,106,74,101)(65,114,75,119)(66,104,76,109)(67,112,77,117)(68,102,78,107)(69,120,79,115)(70,110,80,105)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,26)(6,24)(7,25)(8,21)(9,22)(10,23)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,61)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(81,115)(82,116)(83,117)(84,118)(85,119)(86,120)(87,111)(88,112)(89,113)(90,114)(91,107)(92,108)(93,109)(94,110)(95,101)(96,102)(97,103)(98,104)(99,105)(100,106)(121,159)(122,160)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,143)(132,144)(133,145)(134,146)(135,147)(136,148)(137,149)(138,150)(139,141)(140,142), (1,41)(2,47)(3,43)(4,49)(5,45)(6,48)(7,44)(8,50)(9,46)(10,42)(11,51)(12,57)(13,53)(14,59)(15,55)(16,56)(17,52)(18,58)(19,54)(20,60)(21,61)(22,67)(23,63)(24,69)(25,65)(26,66)(27,62)(28,68)(29,64)(30,70)(31,71)(32,77)(33,73)(34,79)(35,75)(36,76)(37,72)(38,78)(39,74)(40,80)(81,122)(82,144)(83,124)(84,146)(85,126)(86,148)(87,128)(88,150)(89,130)(90,142)(91,149)(92,129)(93,141)(94,121)(95,143)(96,123)(97,145)(98,125)(99,147)(100,127)(101,131)(102,151)(103,133)(104,153)(105,135)(106,155)(107,137)(108,157)(109,139)(110,159)(111,156)(112,138)(113,158)(114,140)(115,160)(116,132)(117,152)(118,134)(119,154)(120,136), (1,17)(2,18)(3,19)(4,20)(5,16)(6,14)(7,15)(8,11)(9,12)(10,13)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,52)(42,53)(43,54)(44,55)(45,56)(46,57)(47,58)(48,59)(49,60)(50,51)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,100)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,97)(89,98)(90,99)(101,120)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117)(109,118)(110,119)(121,126)(122,127)(123,128)(124,129)(125,130)(131,136)(132,137)(133,138)(134,139)(135,140)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,95)(82,96)(83,97)(84,98)(85,99)(86,100)(87,91)(88,92)(89,93)(90,94)(101,115)(102,116)(103,117)(104,118)(105,119)(106,120)(107,111)(108,112)(109,113)(110,114)(121,142)(122,143)(123,144)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,141)(131,160)(132,151)(133,152)(134,153)(135,154)(136,155)(137,156)(138,157)(139,158)(140,159), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,150,12,124)(2,144,13,128)(3,148,14,122)(4,142,15,126)(5,146,11,130)(6,127,19,143)(7,121,20,147)(8,125,16,141)(9,129,17,145)(10,123,18,149)(21,153,31,139)(22,157,32,133)(23,151,33,137)(24,155,34,131)(25,159,35,135)(26,134,36,158)(27,138,37,152)(28,132,38,156)(29,136,39,160)(30,140,40,154)(41,92,57,97)(42,82,58,87)(43,100,59,95)(44,90,60,85)(45,98,51,93)(46,88,52,83)(47,96,53,91)(48,86,54,81)(49,94,55,99)(50,84,56,89)(61,118,71,113)(62,108,72,103)(63,116,73,111)(64,106,74,101)(65,114,75,119)(66,104,76,109)(67,112,77,117)(68,102,78,107)(69,120,79,115)(70,110,80,105) );

G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,26),(6,24),(7,25),(8,21),(9,22),(10,23),(11,36),(12,37),(13,38),(14,39),(15,40),(16,31),(17,32),(18,33),(19,34),(20,35),(41,62),(42,63),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69),(49,70),(50,61),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(81,115),(82,116),(83,117),(84,118),(85,119),(86,120),(87,111),(88,112),(89,113),(90,114),(91,107),(92,108),(93,109),(94,110),(95,101),(96,102),(97,103),(98,104),(99,105),(100,106),(121,159),(122,160),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,143),(132,144),(133,145),(134,146),(135,147),(136,148),(137,149),(138,150),(139,141),(140,142)], [(1,41),(2,47),(3,43),(4,49),(5,45),(6,48),(7,44),(8,50),(9,46),(10,42),(11,51),(12,57),(13,53),(14,59),(15,55),(16,56),(17,52),(18,58),(19,54),(20,60),(21,61),(22,67),(23,63),(24,69),(25,65),(26,66),(27,62),(28,68),(29,64),(30,70),(31,71),(32,77),(33,73),(34,79),(35,75),(36,76),(37,72),(38,78),(39,74),(40,80),(81,122),(82,144),(83,124),(84,146),(85,126),(86,148),(87,128),(88,150),(89,130),(90,142),(91,149),(92,129),(93,141),(94,121),(95,143),(96,123),(97,145),(98,125),(99,147),(100,127),(101,131),(102,151),(103,133),(104,153),(105,135),(106,155),(107,137),(108,157),(109,139),(110,159),(111,156),(112,138),(113,158),(114,140),(115,160),(116,132),(117,152),(118,134),(119,154),(120,136)], [(1,17),(2,18),(3,19),(4,20),(5,16),(6,14),(7,15),(8,11),(9,12),(10,13),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,52),(42,53),(43,54),(44,55),(45,56),(46,57),(47,58),(48,59),(49,60),(50,51),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75),(81,100),(82,91),(83,92),(84,93),(85,94),(86,95),(87,96),(88,97),(89,98),(90,99),(101,120),(102,111),(103,112),(104,113),(105,114),(106,115),(107,116),(108,117),(109,118),(110,119),(121,126),(122,127),(123,128),(124,129),(125,130),(131,136),(132,137),(133,138),(134,139),(135,140),(141,146),(142,147),(143,148),(144,149),(145,150),(151,156),(152,157),(153,158),(154,159),(155,160)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(81,95),(82,96),(83,97),(84,98),(85,99),(86,100),(87,91),(88,92),(89,93),(90,94),(101,115),(102,116),(103,117),(104,118),(105,119),(106,120),(107,111),(108,112),(109,113),(110,114),(121,142),(122,143),(123,144),(124,145),(125,146),(126,147),(127,148),(128,149),(129,150),(130,141),(131,160),(132,151),(133,152),(134,153),(135,154),(136,155),(137,156),(138,157),(139,158),(140,159)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,150,12,124),(2,144,13,128),(3,148,14,122),(4,142,15,126),(5,146,11,130),(6,127,19,143),(7,121,20,147),(8,125,16,141),(9,129,17,145),(10,123,18,149),(21,153,31,139),(22,157,32,133),(23,151,33,137),(24,155,34,131),(25,159,35,135),(26,134,36,158),(27,138,37,152),(28,132,38,156),(29,136,39,160),(30,140,40,154),(41,92,57,97),(42,82,58,87),(43,100,59,95),(44,90,60,85),(45,98,51,93),(46,88,52,83),(47,96,53,91),(48,86,54,81),(49,94,55,99),(50,84,56,89),(61,118,71,113),(62,108,72,103),(63,116,73,111),(64,106,74,101),(65,114,75,119),(66,104,76,109),(67,112,77,117),(68,102,78,107),(69,120,79,115),(70,110,80,105)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C···4J4K4L4M4N5A5B10A···10N10O···10AD20A···20H
order12···2222222444···444445510···1010···1020···20
size11···12222444410···1020202020222···24···44···4

68 irreducible representations

dim11111122222224
type+++++++++++-
imageC1C2C2C2C2C2D4D5C4○D4D10D10D10C5⋊D4D42D5
kernelC2×C23.18D10C2×C10.D4C23.18D10C2×C23.D5C23×Dic5D4×C2×C10C22×C10C22×D4C2×C10C22×C4C2×D4C24C23C22
# reps128311428284168

Matrix representation of C2×C23.18D10 in GL5(𝔽41)

400000
01000
00100
00010
00001
,
400000
01000
00100
000126
000040
,
10000
040000
004000
000400
000040
,
10000
01000
00100
000400
000040
,
400000
010000
011400
00010
0002240
,
400000
0191200
042200
0003212
00079

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,26,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,10,11,0,0,0,0,4,0,0,0,0,0,1,22,0,0,0,0,40],[40,0,0,0,0,0,19,4,0,0,0,12,22,0,0,0,0,0,32,7,0,0,0,12,9] >;

C2×C23.18D10 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{18}D_{10}
% in TeX

G:=Group("C2xC2^3.18D10");
// GroupNames label

G:=SmallGroup(320,1468);
// by ID

G=gap.SmallGroup(320,1468);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,675,297,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=1,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=f*b*f^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations

׿
×
𝔽